Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Syst ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38703772

RESUMEN

The placenta is a selective maternal-fetal barrier that provides nourishment and protection from infections. However, certain pathogens can attach to and even cross the placenta, causing pregnancy complications with potential lifelong impacts on the child's health. Here, we profiled at the single-cell level the placental responses to three pathogens associated with intrauterine complications-Plasmodium falciparum, Listeria monocytogenes, and Toxoplasma gondii. We found that upon exposure to the pathogens, all placental lineages trigger inflammatory responses that may compromise placental function. Additionally, we characterized the responses of fetal macrophages known as Hofbauer cells (HBCs) to each pathogen and propose that they are the probable niche for T. gondii. Finally, we revealed how P. falciparum adapts to the placental microenvironment by modulating protein export into the host erythrocyte and nutrient uptake pathways. Altogether, we have defined the cellular networks and signaling pathways mediating acute placental inflammatory responses that could contribute to pregnancy complications.

2.
Microlife ; 5: uqae005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623411

RESUMEN

Invasive non-typhoidal Salmonella (iNTS) disease is a serious bloodstream infection that targets immune-compromised individuals, and causes significant mortality in sub-Saharan Africa. Salmonella enterica serovar Typhimurium ST313 causes the majority of iNTS in Malawi. We performed an intensive comparative genomic analysis of 608 S. Typhimurium ST313 isolates dating between 1996 and 2018 from Blantyre, Malawi. We discovered that following the arrival of the well-characterized S. Typhimurium ST313 lineage 2 in 1999, two multidrug-resistant variants emerged in Malawi in 2006 and 2008, designated sublineages 2.2 and 2.3, respectively. The majority of S. Typhimurium isolates from human bloodstream infections in Malawi now belong to sublineages 2.2 or 2.3. To understand the emergence of the prevalent ST313 sublineage 2.2, we studied two representative strains, D23580 (lineage 2) and D37712 (sublineage 2.2). The chromosome of ST313 lineage 2 and sublineage 2.2 only differed by 29 SNPs/small indels and a 3 kb deletion of a Gifsy-2 prophage region including the sseI pseudogene. Lineage 2 and sublineage 2.2 had distinctive plasmid profiles. The transcriptome was investigated in 15 infection-relevant in vitro conditions and within macrophages. During growth in physiological conditions that do not usually trigger S. Typhimurium SPI2 gene expression, the SPI2 genes of D37712 were transcriptionally active. We identified down-regulation of flagellar genes in D37712 compared with D23580. Following phenotypic confirmation of transcriptomic differences, we discovered that sublineage 2.2 had increased fitness compared with lineage 2 during mixed growth in minimal media. We speculate that this competitive advantage is contributing to the emergence of sublineage 2.2 in Malawi.

3.
Proc Natl Acad Sci U S A ; 121(2): e2313326120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165934

RESUMEN

Our understanding of how human skin cells differ according to anatomical site and tumour formation is limited. To address this, we have created a multiscale spatial atlas of healthy skin and basal cell carcinoma (BCC), incorporating in vivo optical coherence tomography, single-cell RNA sequencing, spatial global transcriptional profiling, and in situ sequencing. Computational spatial deconvolution and projection revealed the localisation of distinct cell populations to specific tissue contexts. Although cell populations were conserved between healthy anatomical sites and in BCC, mesenchymal cell populations including fibroblasts and pericytes retained signatures of developmental origin. Spatial profiling and in silico lineage tracing support a hair follicle origin for BCC and demonstrate that cancer-associated fibroblasts are an expansion of a POSTN+ subpopulation associated with hair follicles in healthy skin. RGS5+ pericytes are also expanded in BCC suggesting a role in vascular remodelling. We propose that the identity of mesenchymal cell populations is regulated by signals emanating from adjacent structures and that these signals are repurposed to promote the expansion of skin cancer stroma. The resource we have created is publicly available in an interactive format for the research community.


Asunto(s)
Carcinoma Basocelular , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/patología , Piel/patología , Folículo Piloso
4.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38271481

RESUMEN

Next-generation sequencing (NGS) has revolutionized the field of rare disease diagnostics. Whole exome and whole genome sequencing are now routinely used for diagnostic purposes; however, the overall diagnosis rate remains lower than expected. In this work, we review current approaches used for calling and interpretation of germline genetic variants in the human genome, and discuss the most important challenges that persist in the bioinformatic analysis of NGS data in medical genetics. We describe and attempt to quantitatively assess the remaining problems, such as the quality of the reference genome sequence, reproducible coverage biases, or variant calling accuracy in complex regions of the genome. We also discuss the prospects of switching to the complete human genome assembly or the human pan-genome and important caveats associated with such a switch. We touch on arguably the hardest problem of NGS data analysis for medical genomics, namely, the annotation of genetic variants and their subsequent interpretation. We highlight the most challenging aspects of annotation and prioritization of both coding and non-coding variants. Finally, we demonstrate the persistent prevalence of pathogenic variants in the coding genome, and outline research directions that may enhance the efficiency of NGS-based disease diagnostics.


Asunto(s)
Biología Computacional , Enfermedades Raras , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Genómica , Genoma Humano , Células Germinativas , Secuenciación de Nucleótidos de Alto Rendimiento
5.
bioRxiv ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37986877

RESUMEN

T cells develop from circulating precursors, which enter the thymus and migrate throughout specialised sub-compartments to support maturation and selection. This process starts already in early fetal development and is highly active until the involution of the thymus in adolescence. To map the micro-anatomical underpinnings of this process in pre- vs. post-natal states, we undertook a spatially resolved analysis and established a new quantitative morphological framework for the thymus, the Cortico-Medullary Axis. Using this axis in conjunction with the curation of a multimodal single-cell, spatial transcriptomics and high-resolution multiplex imaging atlas, we show that canonical thymocyte trajectories and thymic epithelial cells are highly organised and fully established by post-conception week 12, pinpoint TEC progenitor states, find that TEC subsets and peripheral tissue genes are associated with Hassall's Corpuscles and uncover divergence in the pace and drivers of medullary entry between CD4 vs. CD8 T cell lineages. These findings are complemented with a holistic toolkit for spatial analysis and annotation, providing a basis for a detailed understanding of T lymphocyte development.

8.
Sci Rep ; 12(1): 8788, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610252

RESUMEN

Environmental perturbations impact multiple cellular traits, including gene expression. Bacteria respond to these stressful situations through complex gene interaction networks, thereby inducing stress tolerance and survival of cells. In this paper, we study the response mechanisms of E. coli when exposed to different environmental stressors via differential expression and co-expression analysis. Gene co-expression networks were generated and analyzed via Weighted Gene Co-expression Network Analysis (WGCNA). Based on the gene co-expression networks, genes with similar expression profiles were clustered into modules. The modules were analysed for identification of hub genes, enrichment of biological processes and transcription factors. In addition, we also studied the link between transcription factors and their differentially regulated targets to understand the regulatory mechanisms involved. These networks validate known gene interactions and provide new insights into genes mediating transcriptional regulation in specific stress environments, thus allowing for in silico hypothesis generation.


Asunto(s)
Escherichia coli K12 , Escherichia coli , Escherichia coli/genética , Escherichia coli K12/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Factores de Transcripción/genética , Transcriptoma
9.
Data Brief ; 42: 108122, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35434228

RESUMEN

In the evolution of invertebrates, the transition from egg-layers to brooders occurred many times. However, the molecular mechanisms underlying this transition are still not well understood. Recently diverged species genus Littorina (Mollusca, Gastropoda, Caenogastropoda, Littorinimorpha): Littorina saxatilis, L. arcana, L. compressa, L. obtusata and L. fabalis might be a fruitful model for elucidation of these mechanisms. All five species sympatrically inhabit an intertidal zone. Only L. saxatilis is ovoviviparous while the other four species form clutches. Although in L. saxatilis jelly gland of the pallial oviduct function as a brood pouch, it is not deeply modified at the morphological level in comparison to egg-laying relatives. Comparative analysis of transcriptomic profiles of the pallial oviducts of these closely related species might help to uncover the molecular mechanisms of the egg-laying to brooding transition. Unraveling of the mechanisms underlying this transition in L. saxatilis is important not only in aspects of reproduction biology and strategy, but also in a broader view as an example of relatively fast evolutionary transformations. We generated an RNA-seq dataset (224 104 446 clean reads) for oviducts of five species genus Littorina. Libraries of all five species were sequenced using Illumina HiSeq 2500; additional reads for L. arcana were obtained using Illumina NovaSeq 6000. Transcriptomic profiles were analyzed in pooled samples (of three individuals) with two biological replicates for each species (each biological replicate was prepared and sequenced as a separate library). The transcriptome was assembled de novo and annotated with five assembles corresponding to each species. The raw data were uploaded to the SRA database, the BioProject IDs are PRJNA662103 ("obtusata" group) and PRJNA707549 ("saxatilis" group).

10.
Genes (Basel) ; 13(4)2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35456380

RESUMEN

Although high altitude training has been increasingly popular among endurance athletes, the molecular and cellular bases of this adaptation remain poorly understood. We aimed to define the underlying physiological changes and screen for potential biomarkers of adaptation using transcriptional profiling of whole blood. Seven elite female speed skaters were profiled on the 18th day of high-altitude adaptation. Whole blood RNA-seq before and after an intense 1 h skating bout was used to measure gene expression changes associated with exercise. In order to identify the genes specifically regulated at high altitudes, we have leveraged the data from eight previously published microarray datasets studying blood expression changes after exercise at sea level. Using cell type-specific signatures, we were able to deconvolute changes of cell type abundance from individual gene expression changes. Among these were PHOSPHO1, with a known role in erythropoiesis, and MARC1 with a role in endogenic NO metabolism. We find that platelet and erythrocyte counts uniquely respond to altitude exercise, while changes in neutrophils represent a more generic marker of intense exercise. Publicly available data from both single cell atlases and exercise-related blood profiling dramatically increases the value of whole blood RNA-seq for the dynamic evaluation of physiological changes in an athlete's body.


Asunto(s)
Altitud , Ejercicio Físico , Aclimatación , Atletas , Ejercicio Físico/fisiología , Femenino , Humanos , Análisis de Secuencia de ARN
11.
BMC Genomics ; 23(1): 155, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193511

RESUMEN

BACKGROUND: Accurate variant detection in the coding regions of the human genome is a key requirement for molecular diagnostics of Mendelian disorders. Efficiency of variant discovery from next-generation sequencing (NGS) data depends on multiple factors, including reproducible coverage biases of NGS methods and the performance of read alignment and variant calling software. Although variant caller benchmarks are published constantly, no previous publications have leveraged the full extent of available gold standard whole-genome (WGS) and whole-exome (WES) sequencing datasets. RESULTS: In this work, we systematically evaluated the performance of 4 popular short read aligners (Bowtie2, BWA, Isaac, and Novoalign) and 9 novel and well-established variant calling and filtering methods (Clair3, DeepVariant, Octopus, GATK, FreeBayes, and Strelka2) using a set of 14 "gold standard" WES and WGS datasets available from Genome In A Bottle (GIAB) consortium. Additionally, we have indirectly evaluated each pipeline's performance using a set of 6 non-GIAB samples of African and Russian ethnicity. In our benchmark, Bowtie2 performed significantly worse than other aligners, suggesting it should not be used for medical variant calling. When other aligners were considered, the accuracy of variant discovery mostly depended on the variant caller and not the read aligner. Among the tested variant callers, DeepVariant consistently showed the best performance and the highest robustness. Other actively developed tools, such as Clair3, Octopus, and Strelka2, also performed well, although their efficiency had greater dependence on the quality and type of the input data. We have also compared the consistency of variant calls in GIAB and non-GIAB samples. With few important caveats, best-performing tools have shown little evidence of overfitting. CONCLUSIONS: The results show surprisingly large differences in the performance of cutting-edge tools even in high confidence regions of the coding genome. This highlights the importance of regular benchmarking of quickly evolving tools and pipelines. We also discuss the need for a more diverse set of gold standard genomes that would include samples of African, Hispanic, or mixed ancestry. Additionally, there is also a need for better variant caller assessment in the repetitive regions of the coding genome.


Asunto(s)
Benchmarking , Polimorfismo de Nucleótido Simple , Exoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Programas Informáticos
12.
Genome Biol ; 22(1): 349, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34930397

RESUMEN

We have developed an efficient and inexpensive pipeline for streamlining large-scale collection and genome sequencing of bacterial isolates. Evaluation of this method involved a worldwide research collaboration focused on the model organism Salmonella enterica, the 10KSG consortium. Following the optimization of a logistics pipeline that involved shipping isolates as thermolysates in ambient conditions, the project assembled a diverse collection of 10,419 isolates from low- and middle-income countries. The genomes were sequenced using the LITE pipeline for library construction, with a total reagent cost of less than USD$10 per genome. Our method can be applied to other large bacterial collections to underpin global collaborations.


Asunto(s)
Genoma Bacteriano , Secuenciación Completa del Genoma/métodos , ADN Bacteriano/aislamiento & purificación , Genoma , Humanos , Salmonella enterica/genética , Secuenciación Completa del Genoma/economía
13.
Biology (Basel) ; 10(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34827080

RESUMEN

Genus Littorina subgenus Neritrema (Mollusca, Caenogastropoda) includes the "obtusata" group of closely related species (Littorina obtusata and L. fabalis). The anatomy of the adult reproductive system (pallial oviduct) is the only reliable feature used for species identification in females of these species. Reproductive system anatomy and reproduction-associated proteins often diverge between sibling species. Despite being of high evolutionary interest, the molecular basis of this divergence remains poorly understood. We performed proteotranscriptomic comparison of oviducts of L. obtusata and L. fabalis by RNA-seq on Illumina HiSeq 2500 and two-dimensional protein electrophoresis (2D DIGE) with MS/MS identification of the species-specific proteins. The interspecies differences in the oviduct were associated with (1) metabolic proteins reflecting overall physiological differences between L. obtusata and L. fabalis, (2) receptor proteins, and (3) transcripts related to transposable elements (TEs). Various receptors identified may recognize a wide variety of ligands from pathogen-associated molecular patterns to specific carbohydrates on the sperm surface. Therefore, these may participate in immune defense as well as in sperm storage and regulation. Species-specificity of multiple TE sequences (coding for reverse transcriptase and ribonuclease H) may indicate the important role of these genomic elements in the Littorina species divergence, which has not been reported previously.

14.
PLoS Pathog ; 17(8): e1009280, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460873

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that causes diarrheal disease in humans and animals. During salmonellosis, S. Typhimurium colonizes epithelial cells lining the gastrointestinal tract. S. Typhimurium has an unusual lifestyle in epithelial cells that begins within an endocytic-derived Salmonella-containing vacuole (SCV), followed by escape into the cytosol, epithelial cell lysis and bacterial release. The cytosol is a more permissive environment than the SCV and supports rapid bacterial growth. The physicochemical conditions encountered by S. Typhimurium within the epithelial cytosol, and the bacterial genes required for cytosolic colonization, remain largely unknown. Here we have exploited the parallel colonization strategies of S. Typhimurium in epithelial cells to decipher the two niche-specific bacterial virulence programs. By combining a population-based RNA-seq approach with single-cell microscopic analysis, we identified bacterial genes with cytosol-induced or vacuole-induced expression signatures. Using these genes as environmental biosensors, we defined that Salmonella is exposed to oxidative stress and iron and manganese deprivation in the cytosol and zinc and magnesium deprivation in the SCV. Furthermore, iron availability was critical for optimal S. Typhimurium replication in the cytosol, as well as entC, fepB, soxS, mntH and sitA. Virulence genes that are typically associated with extracellular bacteria, namely Salmonella pathogenicity island 1 (SPI1) and SPI4, showed increased expression in the cytosol compared to vacuole. Our study reveals that the cytosolic and vacuolar S. Typhimurium virulence gene programs are unique to, and tailored for, residence within distinct intracellular compartments. This archetypical vacuole-adapted pathogen therefore requires extensive transcriptional reprogramming to successfully colonize the mammalian cytosol.


Asunto(s)
Adaptación Fisiológica , Proteínas Bacterianas/metabolismo , Citosol/metabolismo , Regulación Bacteriana de la Expresión Génica , Infecciones por Salmonella/microbiología , Salmonella enterica/fisiología , Virulencia , Proteínas Bacterianas/genética , Citosol/microbiología , Islas Genómicas , Células HeLa , Humanos , RNA-Seq , Infecciones por Salmonella/metabolismo
15.
Microbiol Resour Announc ; 10(12)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33766909

RESUMEN

We report the complete genome sequencing and annotation of four Salmonella enterica serovar Enteritidis isolates, two that are representative of the Central/Eastern African clade (CP255 and D7795) and two of the Global Epidemic clade (A1636 and P125109).

16.
G3 (Bethesda) ; 11(4)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33677552

RESUMEN

Thousands of yeast genomes have been sequenced with both traditional and long-read technologies, and multiple observations about modes of genome evolution for both wild and laboratory strains have been drawn from these sequences. In our study, we applied Oxford Nanopore and Illumina technologies to assemble complete genomes of two widely used members of a distinct laboratory yeast lineage, the Peterhof Genetic Collection (PGC), and investigate the structural features of these genomes including transposable element content, copy number alterations, and structural rearrangements. We identified numerous notable structural differences between genomes of PGC strains and the reference S288C strain. We discovered a substantial enrichment of mid-length insertions and deletions within repetitive coding sequences, such as in the SCH9 gene or the NUP100 gene, with possible impact of these variants on protein amyloidogenicity. High contiguity of the final assemblies allowed us to trace back the history of reciprocal unbalanced translocations between chromosomes I, VIII, IX, XI, and XVI of the PGC strains. We show that formation of hybrid alleles of the FLO genes during such chromosomal rearrangements is likely responsible for the lack of invasive growth of yeast strains. Taken together, our results highlight important features of laboratory yeast strain evolution using the power of long-read sequencing.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cromosomas , Elementos Transponibles de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Laboratorios , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN
17.
Mitochondrion ; 59: 96-104, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33631347

RESUMEN

Bryozoans are aquatic colonial suspension-feeders abundant in many marine and freshwater benthic communities. At the same time, the phylum is under studied on both morphological and molecular levels, and its position on the metazoan tree of life is still disputed. Bryozoa include the exclusively marine Stenolaemata, predominantly marine Gymnolaemata and exclusively freshwater Phylactolaemata. Here we report the mitochondrial genome of the phylactolaemate bryozoan Cristatella mucedo. This species has the largest (21,008 bp) of all currently known bryozoan mitogenomes, containing a typical metazoan gene compendium as well as a number of non-coding regions, three of which are longer than 1500 bp. The trnS1/trnG/nad3 region is presumably duplicated in this species. Comparative analysis of the gene order in C. mucedo and another phylactolaemate bryozoan, Pectinatella magnifica, confirmed their close relationships, and revealed a stronger similarity to mitogenomes of phoronids and other lophotrochozoan species than to marine bryozoans, indicating the ancestral nature of their gene arrangement. We suggest that the ancestral gene order underwent substantial changes in different bryozoan cladesshowing mosaic distribution of conservative gene blocks regardless of their phylogenetic position. Altogether, our results support the early divergence of Phylactolaemata from the rest of Bryozoa.


Asunto(s)
Briozoos/clasificación , Mitocondrias/genética , Análisis de Secuencia de ADN/métodos , Animales , Briozoos/anatomía & histología , Briozoos/genética , Evolución Molecular , Orden Génico , Tamaño del Genoma , Genoma Mitocondrial , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia
18.
Nat Microbiol ; 6(3): 327-338, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33349664

RESUMEN

Bloodstream infections caused by nontyphoidal Salmonella are a major public health concern in Africa, causing ~49,600 deaths every year. The most common Salmonella enterica pathovariant associated with invasive nontyphoidal Salmonella disease is Salmonella Typhimurium sequence type (ST)313. It has been proposed that antimicrobial resistance and genome degradation has contributed to the success of ST313 lineages in Africa, but the evolutionary trajectory of such changes was unclear. Here, to define the evolutionary dynamics of ST313, we sub-sampled from two comprehensive collections of Salmonella isolates from African patients with bloodstream infections, spanning 1966 to 2018. The resulting 680 genome sequences led to the discovery of a pan-susceptible ST313 lineage (ST313 L3), which emerged in Malawi in 2016 and is closely related to ST313 variants that cause gastrointestinal disease in the United Kingdom and Brazil. Genomic analysis revealed degradation events in important virulence genes in ST313 L3, which had not occurred in other ST313 lineages. Despite arising only recently in the clinic, ST313 L3 is a phylogenetic intermediate between ST313 L1 and L2, with a characteristic accessory genome. Our in-depth genotypic and phenotypic characterization identifies the crucial loss-of-function genetic events that occurred during the stepwise evolution of invasive S. Typhimurium across Africa.


Asunto(s)
Evolución Molecular , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Sepsis/microbiología , África/epidemiología , Farmacorresistencia Bacteriana , Variación Genética , Genoma Bacteriano/genética , Genotipo , Humanos , Fenotipo , Filogenia , Plásmidos/genética , Seudogenes , Infecciones por Salmonella/epidemiología , Salmonella typhimurium/aislamiento & purificación , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/fisiología , Sepsis/epidemiología , Sepsis/transmisión , Virulencia
19.
PLoS Negl Trop Dis ; 14(11): e0008796, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33232324

RESUMEN

Salmonella is a major cause of foodborne disease globally. Pigs can carry and shed non-typhoidal Salmonella (NTS) asymptomatically, representing a significant reservoir for these pathogens. To investigate Salmonella carriage by African domestic pigs, faecal and mesenteric lymph node samples were taken at slaughter in Nairobi, Busia (Kenya) and Chikwawa (Malawi) between October 2016 and May 2017. Selective culture, antisera testing and whole genome sequencing were performed on samples from 647 pigs; the prevalence of NTS carriage was 12.7% in Busia, 9.1% in Nairobi and 24.6% in Chikwawa. Two isolates of S. Typhimurium ST313 were isolated, but were more closely related to ST313 isolates associated with gastroenteritis in the UK than bloodstream infection in Africa. The discovery of porcine NTS carriage in Kenya and Malawi reveals potential for zoonotic transmission of diarrhoeal strains to humans in these countries, but not for transmission of clades specifically associated with invasive NTS disease in Africa.


Asunto(s)
Enfermedades Transmitidas por los Alimentos/epidemiología , Gastroenteritis/epidemiología , Carne de Cerdo/microbiología , Salmonelosis Animal/epidemiología , Salmonella typhimurium/clasificación , Salmonella typhimurium/aislamiento & purificación , Animales , Zoonosis Bacterianas/epidemiología , Zoonosis Bacterianas/microbiología , Zoonosis Bacterianas/transmisión , Farmacorresistencia Bacteriana Múltiple/genética , Enfermedades Transmitidas por los Alimentos/microbiología , Gastroenteritis/microbiología , Gastroenteritis/veterinaria , Humanos , Kenia/epidemiología , Ganglios Linfáticos/microbiología , Malaui/epidemiología , Pruebas de Sensibilidad Microbiana , Tipificación Molecular , Salmonelosis Animal/transmisión , Salmonella typhimurium/genética , Porcinos/parasitología , Secuenciación Completa del Genoma
20.
Sci Rep ; 10(1): 2057, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029882

RESUMEN

Advantages and diagnostic effectiveness of the two most widely used resequencing approaches, whole exome (WES) and whole genome (WGS) sequencing, are often debated. WES dominated large-scale resequencing projects because of lower cost and easier data storage and processing. Rapid development of 3rd generation sequencing methods and novel exome sequencing kits predicate the need for a robust statistical framework allowing informative and easy performance comparison of the emerging methods. In our study we developed a set of statistical tools to systematically assess coverage of coding regions provided by several modern WES platforms, as well as PCR-free WGS. We identified a substantial problem in most previously published comparisons which did not account for mappability limitations of short reads. Using regression analysis and simple machine learning, as well as several novel metrics of coverage evenness, we analyzed the contribution from the major determinants of CDS coverage. Contrary to a common view, most of the observed bias in modern WES stems from mappability limitations of short reads and exome probe design rather than sequence composition. We also identified the ~ 500 kb region of human exome that could not be effectively characterized using short read technology and should receive special attention during variant analysis. Using our novel metrics of sequencing coverage, we identified main determinants of WES and WGS performance. Overall, our study points out avenues for improvement of enrichment-based methods and development of novel approaches that would maximize variant discovery at optimal cost.


Asunto(s)
Secuenciación del Exoma/estadística & datos numéricos , Exoma/genética , Genoma Humano/genética , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Secuenciación Completa del Genoma/estadística & datos numéricos , Secuencia de Bases/genética , Interpretación Estadística de Datos , Humanos , Aprendizaje Automático , Modelos Genéticos , Sistemas de Lectura Abierta/genética , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...